
Project: WP Smart Contracts
Website: wpsmartcontracts.com
Platform: ETH, BSC, and others
Language: Solidity
Date: April 22nd, 2022

https://wpsmartcontracts.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 26

● Solidity static analysis ….……………………………………………………………….. 31

● Solhint Linter …………………………………………………………………….……….. 37

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the WP Smart Contracts team to perform the Security
audit of the Suika (ERC721), Matcha (ERC721), Almond (Staking) and Ube (staking)
smart contracts code. The audit has been performed using manual analysis as well as
using automated software tools. This report presents all the findings regarding the audit
performed on April 22nd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The WP Smart Contracts provides the smart contract solutions to the wordpress users.

They develop various WP plugins which lets WP websites use the smart contract

deployment quickly. We audited their Suika (ERC721), Matcha (ERC721), Almond

(Staking) and Ube (staking) smart contracts.

Audit scope

Name Code Review and Security Analysis Report for
WP Smart Contracts Protocol Smart Contracts

Platform Multiple blockchain platforms / Solidity

File 1 Suika - ERC721 NFT

File 2 Ube - Staking

File 3 Matcha - ERC721 NFT Marketplace

File 4 Almond - Staking

Audit Date April 22nd, 2022

Revision Date May 9th, 2022

https://bscscan.com/address/0x4a52a6cba544165a141366d27ae582281df265c7#code
https://bscscan.com/address/0xec2cb211cdd8347c3d709e2ef67289e93d4565a0#codePlease
https://etherscan.io/address/0x7b68b84e52c6161b321c777836309bcaf686eb91#code
https://bscscan.com/address/0x590441be0777b43b441c1ab6ae78e530df741778#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Ube - Staking
● Owner can set:

○ APY: annual percentage yield, or annual

percentage interest, calculated per second

○ Maturity: users can claim rewards only if

they remain staked for at least this number

of days

○ Minimum amount to create a stake

○ ERC-20/BEP-20 token to stake

● If the owner does not provide allowance of the

token or removes it afterwards, then it will not pay

any interest to users.

YES, This is valid.

Suika - ERC721 NFT
● This contract has native & advanced features like:

○ Ownership

○ Transfer

○ Approval

○ Mint

○ Sell

○ Auctions, buy and sell using a standard

ERC-20 or BEP-20 token

○ Royalty commissions for NFT creators

● Contract owner can change following:

○ Commission Rate

○ Royalties Commission Rate

○ Payment Token

○ Grant / Revoke roles

● Unlimited tokens can be minted.

YES, This is valid.

Almond - Staking
● Owner can set:

○ The first ERC-20/BEP-20, which is used to

stake

○ A secondary ERC-20/BEP-20 token to

accrue interest

○ APY: annual interest rate for the first token

(optional), calculated per second

○ APY 2: the APY for the secondary token.

○ Maturity: users can claim rewards only if

they remain staked for at least this number

of days

○ Minimum amount to create a stake

● If the owner does not provide allowance of the

token or removes it afterwards, then it will not pay

any interest to users.

YES, This is valid.

Matcha - ERC721 NFT Marketplace
● This contract has native & advanced features like:

○ Ownership

○ Transfer

○ Approval

○ Mint

○ Sell

○ Auction

○ Auctions, buy and sell using a native coins

(ETH, BNB, Matic, etc)

● Contract owner can change following:

○ Commission Rate

○ Change owner wallet

○ Disable/Enable public minting

● Unlimited tokens can be minted.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 2 critical, 0 high, 0 medium and 4 low and some very low level issues.
These are fixed / acknowledged in the revised contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 4 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the WP Smart Contracts Protocol are part of its logical algorithm. A library

is a different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the WP Smart Contracts Protocol.

The WP Smart Contracts team has not provided unit test scripts, which would have helped

to determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a WP Smart Contracts Protocol smart contract code in the form of a

BSCScan / Etherscan web link. The links of that code are mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Stakes.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 isOwner modifier Passed No Issue
3 changeOwner write access by is Owner No Issue
4 getOwner read Passed No Issue
5 nonReentrant modifier Passed No Issue
6 start external Passed No Issue
7 end external Passed No Issue
8 set write access by is Owner No Issue
9 get_gains read Passed No Issue

10 ledger_length read Passed No Issue

ERC721Suika.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 autoMint write access only Minter No Issue
4 mint write access only Minter No Issue
5 safeMint write access only Minter No Issue
6 isMinter read Passed No Issue
7 safeMint write access only Minter No Issue
8 _burn internal Passed No Issue
9 _beforeTokenTransfer internal Passed No Issue

10 tokenURI write Passed No Issue
11 supportsInterface write Passed No Issue
12 addMinter write access only Role No Issue
13 canIMint write Passed No Issue
14 onlyMinter modifier Passed No Issue
15 canSell read Passed No Issue
16 sell write Passed No Issue
17 getPrice read Passed No Issue
18 canBuy read Passed No Issue
19 buy write No fraction value in

commission rates
Acknowledged

20 canAuction read Passed No Issue
21 createAuction write Passed No Issue
22 canBid read Passed No Issue
23 _mint internal Passed No Issue
24 bid write Passed No Issue

25 canWithdraw read Passed No Issue
26 withdraw write Passed No Issue
27 canFinalize read Passed No Issue
28 auctionFinalize write No fraction value in

commission rates
Acknowledged

29 highestBidder read Passed No Issue
30 highestBid read Passed No Issue
31 callOptionalReturn write Passed No Issue
32 updateAdmin write Passed No Issue

StakesAlmond.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 isOwner modifier Passed No Issue
3 changeOwner write access by isOwner No Issue
4 getOwner read Passed No Issue
5 nonReentrant modifier Passed No Issue
6 start external Passed No Issue
7 end write Passed No Issue
8 set write access by isOwner No Issue
9 get_gains read Passed No Issue

10 get_gains2 read Passed No Issue
11 ledger_length read Passed No Issue

ERC721Matcha.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 exists read Passed No Issue
3 tokensOfOwner read Passed No Issue
4 setTokenURI write Anyone can set this Removed in

revised code
5 autoMint write access only Minter No Issue
6 transfer write Passed No Issue
7 nonReentrant modifie

r
Passed No Issue

8 canSell read Passed No Issue
9 sell write Passed No Issue

10 getPrice read Passed No Issue
11 canBuy read Passed No Issue
12 buy write Passed No Issue
13 canAuction read Passed No Issue

14 createAuction write Passed No Issue
15 canBid read Passed No Issue
16 bid write Bidding can be frozen Fixed in the

revised contract
17 canWithdraw read Passed No Issue
18 withdraw write Passed No Issue
19 canFinalize read Passed No Issue
20 auctionFinalize write Passed No Issue
21 highestBidder read Passed No Issue
22 highestBid read Passed No Issue
23 callOptionalReturn write Passed No Issue
24 updateAdmin write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

Two critical vulnerabilities were found and fixed. WP Smart Contracts team desires to keep

the bug details confidential, and thus are not revealed here. But we confirmed that those

bugs were fixed in the revised contracts code.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

(1) No fractional commission amount possible - Suika and Matcha smart contracts

The commission for owner and creators can only be in whole amount and not in fraction.

For example, it can only be 1,2,3,etc. It can not be 1.5% or other fractional value.

Resolution: If this is required logic, then this point can be safely ignored. On another

hand, the commission value can be used after multiplying with 100 or any decimal amount.

So, the owner can have the option to set the percentage in fraction if desired.

Status: Acknowledged

(2) Users may not gain the interest - Ube Smart Contract

In case, the owner does not provide enough allowance, or he does not keep enough token

balance into the owner wallet, then users will not receive any interest reward. This is a

human factor, so it reduces the decentralization.

Resolution: The owner needs to acknowledge that he will provide enough allowance as

well as keep enough balance so that users can receive their interest benefits. On another

hand, to make this more trustless, enough tokens can be deposited in the contract for the

purpose of interest payment.

Status: Acknowledged

(3) SafeMath is used - All 4 smart contracts

Solidity version above 0.8.0 has in-built integer overflow/underflow protection. So, it is

recommended to avoid using safemath.

Resolution: We suggest avoiding safemath when the solidity version is over 0.8.0. This

saves some gas as well.

Status: Fixed

(4) Older solidity version used - Matcha smart contract

It is advisable to use the latest solidity version, as many security bugs are fixed in the

latest version.

Status: Fixed

Very Low / Informational / Best practices:

(1) Input validations can be helpful - Suika and Matcha smart contracts

The owner can set commission percentages. If the wrong amount has been set by

mistake, then it creates discrepancy in the formula.

Resolution: We suggest adding a condition which specifies the expected percentage

variable. This will make sure that the input params will be expected ones. On another

hand, this can be acknowledged by the owner that he will make sure the correct amount

before setting those values.

Status: Fixed

(2) Function suggestion - Ube smart contract

It is helpful to make a view function which outputs if a particular stake is matured or not.

This will be helpful while unstaking, to make sure the premature staking is not withdrawn.

This is a “nice to have” feature. And it will not create any issues if that is not present.

Status: Acknowledged

(3) Consider using ‘external’ visibility instead of ‘public’ - All 4 smart contracts

Although this is not a big problem, it is recommended to use the visibility ‘external’ over

‘public’. It saves some gas as well.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Status: Fixed

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● changeOwner - Stakes contract owner can change the owner.

● set: Stakes contract owner can set lower amount, maturity value, rate, penalization

values.

● updateAdmin in ERC721Suika: The owner can change the commission

percentages, payment token, etc.

● autoMint, mint, safeMint in ERC721Suika and ERC721Matcha: The minter can mint

tokens as needed.

● grantRole in ERC721Suika: Any new role can be granted.

● revokeRole in ERC721Suika: The owner can revoke a particular role.

● renounceRole in ERC721Suika: The role can be given up completely.

● set: StakesAlmond owner can set values like: ratio1, ratio2, lower amount, maturity

rate, interest rate, penalization, etc

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We had observed some issues in the smart contracts. And

those issues are fixed / acknowledged in the revised contract code. So, the smart
contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - WP Smart Contracts Protocol

Stakes Diagram

ERC721Suika Diagram

StakesAlmond Diagram

ERC721Matcha Diagram

Slither Results Log

Solidity Static Analysis

Solhint Linter

Ube - Stakes.sol

Stakes.sol:530:18: Error: Parse error: missing ';' at '{'
Stakes.sol:571:18: Error: Parse error: missing ';' at '{'
Stakes.sol:604:18: Error: Parse error: missing ';' at '{'
Stakes.sol:653:18: Error: Parse error: missing ';' at '{'

ERC721Suika.sol

ERC721Suika.sol:1933:18: Error: Parse error: missing ';' at '{'
ERC721Suika.sol:1942:18: Error: Parse error: missing ';' at '{'
ERC721Suika.sol:2118:18: Error: Parse error: missing ';' at '{'
ERC721Suika.sol:2131:18: Error: Parse error: missing ';' at '{'
ERC721Suika.sol:2143:18: Error: Parse error: missing ';' at '{'
ERC721Suika.sol:2160:18: Error: Parse error: missing ';' at '{'
ERC721Suika.sol:2172:18: Error: Parse error: missing ';' at '{'
ERC721Suika.sol:2268:18: Error: Parse error: missing ';' at '{'
ERC721Suika.sol:2291:18: Error: Parse error: missing ';' at '{'
ERC721Suika.sol:2317:18: Error: Parse error: missing ';' at '{'

StakesAlmond.sol

StakesAlmond.sol:60:1: Error: Compiler version ^0.8.0 does not
satisfy the r semver requirement
StakesAlmond.sol:237:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.sol:293:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.sol:389:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.sol:411:9: Error: Variable name must be in mixedCase
StakesAlmond.sol:472:18: Error: Variable name must be in mixedCase
StakesAlmond.sol:473:18: Error: Variable name must be in mixedCase
StakesAlmond.sol:476:20: Error: Variable name must be in mixedCase
StakesAlmond.sol:490:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.sol:491:23: Error: Variable name must be in mixedCase
StakesAlmond.sol:508:40: Error: Avoid to make time-based decisions in
your business logic
StakesAlmond.sol:518:12: Error: Avoid to make time-based decisions in
your business logic
StakesAlmond.sol:523:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.sol:524:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.sol:524:40: Error: Avoid to make time-based decisions in

your business logic
StakesAlmond.sol:525:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.sol:553:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.sol:554:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.sol:555:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.sol:555:40: Error: Avoid to make time-based decisions in
your business logic
StakesAlmond.sol:556:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.sol:562:32: Error: Variable name must be in mixedCase
StakesAlmond.sol:576:5: Error: Function name must be in mixedCase
StakesAlmond.sol:576:42: Error: Variable name must be in mixedCase
StakesAlmond.sol:577:9: Error: Variable name must be in mixedCase
StakesAlmond.sol:577:35: Error: Avoid to make time-based decisions in
your business logic
StakesAlmond.sol:587:9: Error: Variable name must be in mixedCase
StakesAlmond.sol:590:9: Error: Variable name must be in mixedCase
StakesAlmond.sol:600:5: Error: Function name must be in mixedCase

ERC721Matcha.sol

ERC721Matcha.sol:63:1: Error: Compiler version ^0.5.7 does not
satisfy the r semver requirement
ERC721Matcha.sol:1159:5: Error: Explicitly mark visibility of state
ERC721Matcha.sol:1258:5: Error: Explicitly mark visibility of state
ERC721Matcha.sol:1260:20: Error: Variable name must be in mixedCase
ERC721Matcha.sol:1263:5: Error: Explicitly mark visibility of state
ERC721Matcha.sol:1397:28: Error: Avoid to use ".call.value()()"
ERC721Matcha.sol:1397:28: Error: Avoid using low level calls.
ERC721Matcha.sol:1401:29: Error: Avoid to use ".call.value()()"
ERC721Matcha.sol:1401:29: Error: Avoid using low level calls.
ERC721Matcha.sol:1439:13: Error: Avoid to make time-based decisions
in your business logic
ERC721Matcha.sol:1472:13: Error: Avoid to make time-based decisions
in your business logic
ERC721Matcha.sol:1528:32: Error: Avoid to use ".call.value()()"
ERC721Matcha.sol:1528:32: Error: Avoid using low level calls.
ERC721Matcha.sol:1539:13: Error: Avoid to make time-based decisions
in your business logic
ERC721Matcha.sol:1566:32: Error: Avoid to use ".call.value()()"
ERC721Matcha.sol:1566:32: Error: Avoid using low level calls.
ERC721Matcha.sol:1570:33: Error: Avoid to use ".call.value()()"
ERC721Matcha.sol:1570:33: Error: Avoid using low level calls.

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

