
ADVANCED CROWDSALE

WP Smart Contracts
Smart Contract Audits

___

Nov 2024



Disclaimer
WP Smart Contracts Audits are not, nor should be considered, an “endorsement” or
“disapproval” of any specific project or team. These audits do not, and should not,
indicate the economic value or viability of any “product” or “asset” created by a team
or project that contracts WP Smart Contracts for a security review.

WP Smart Contracts Audits do not offer any warranty or guarantee regarding the
absolute bug-free nature of the analyzed technology, nor do they provide any insight
into the technology's proprietors, business model, or legal compliance. These audits
should not be used to make decisions regarding investment or engagement with
any particular project. They do not constitute investment advice and should not be
relied upon as such.

WP Smart Contracts Audits represent a rigorous review process aimed at assisting
clients in enhancing their code quality while mitigating the substantial risks inherent
in cryptographic tokens and blockchain technology. Blockchain technology and
cryptographic assets carry a high level of ongoing risk. WP Smart Contracts
emphasizes that each company and individual is responsible for their own due
diligence and continuous security. Our objective is to help reduce attack vectors and
address the risks associated with evolving technology. We do not guarantee the
security or functionality of the technology we analyze.

A WP Smart Contracts Audit is a detailed document that analyzes a specific set of
source code provided to WP Smart Contracts by a client. It includes a structured
collection of testing results, analysis, and insights regarding the code’s architecture,
implementation, and adherence to best practices. It serves as confirmation that a
client has undergone a round of auditing to improve the quality of their IT
infrastructure and/or source code.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 2



INTRODUCTION

At WPSmartContracts.com, our commitment to delivering solutions to our users and
the demands of a dynamic market has been our driving force. We are proud of our
journey, which has led us to develop a WordPress plugin that adapts to the evolving
needs of our user community.

In our pursuit of excellence, during November 2024, we embarked on a series of
audits for the four batch of smart contracts within WPSmartContracts. These audits
encompassed critical contracts, including:

● Caramel Advanced Crowdsale

Thank you for entrusting us with your smart contract needs.

Sincerely,
WP Smart Contracts team

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 3



Executive Summary
Below is the global security ranking for all audited smart contracts.

Smart Contract Ranking* Status

Caramel Advanced Crowdsale 9 / 10 ☑ Passed

On the security ranking scale, 0 represents the most insecure while 10 signifies the
highest level of security.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 4



Scope of
Audit

This audit was conducted on November, 2024, we reviewed the following smart
contracts and their dependencies:

Caramel Advanced Crowdsale Contract

● Source: CaramelCrowdsale.sol
● SPDX License Identifier: MIT
● Solidity Version: ^0.8.2

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 5

https://testnet.bscscan.com/address/0x8aF459467Ca7a59d83c64E80BB1B425274684865#code


Methodology
The audit process included an in-depth assessment of the codebase, with a focus on
ensuring the security, functionality, and robustness of these contracts. Our audit
encompassed the following key aspects:

Manual Code Review: Our team of experts conducted a meticulous manual code
review to assess the codebase for proper functionality, adherence to best practices,
and identification of common vulnerabilities or weaknesses. This process involved a
line-by-line analysis of the smart contracts.

Unit Testing: We performed a series of extensive unit tests on the smart contracts to
verify their functionality and ensure that they behave as expected under various
scenarios. These tests involved typical use cases, boundary conditions, and edge
cases to assess the contract's reliability.

Automated Audit Tools: We leveraged automated audit tools, including Slither,
Solhint, and Solidity Static Analysis, to conduct a systematic assessment of the
codebase. These tools helped identify potential issues, security vulnerabilities, and
areas for improvement.

AI Tools: We employed advanced AI-based analysis tools to further verify the
presence of vulnerabilities, logic failures, or any unusual patterns within the code.
These tools contributed to a comprehensive evaluation of the contracts' security.

Our audit aimed to provide a holistic assessment of the smart contracts, ensuring
that they meet the highest standards of security and functionality.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 6



Caramel Crowdsale

Caramel Crowdsale
Internal Audit Results

The CaramelCrowdsale contract is a robust, flexible solution for managing token
sales with advanced security features. Designed to allow participants to purchase
tokens with Ether or any ERC-20 token, the contract offers both immediate and
post-sale delivery options. Tokens can be held until the sale ends, ensuring secure
distribution to contributors. A whitelist feature restricts participation to authorized
addresses, protecting the sale process, while role-based access allows administrators
to update whitelist settings and sale parameters. Dynamic rate and contribution
settings provide customizable control, allowing the owner to set unique rates and
limits for each token accepted as payment, alongside adjustable Ether contribution
thresholds.

Features:

● Receive contributions in Ether or the native coin of the blockchain
● Receive contributions in any ERC-20 token
● Option to restrict participation to whitelisted contributors only
● Supporters can send contributions using a GUI
● Distribute tokens to supporters automatically during the crowdsale, or in

batches at its finalization
● Tokens can optionally be distributed directly to a UBE staking contract
● Receive the funds directly in your ETH wallet
● ERC-20 Token Distribution
● Allowance Crowdsale
● Opening and closing dates
● Ability to finalize the crowdsale

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 7



Caramel Crowdsale

In this report, we provide a comprehensive audit of the CaramelCrowdsale smart
contract, evaluating its structure, functionalities, and security to ensure its integrity
and suitability for intended use. This audit includes recommendations to support its
safe and effective application in the long term.

Audit Results Summary
Caramel Crowdsale: 9 / 10

We found 1 critical and 1 high severity issue, which were fixed in the revised contract
code.

The Crowdsale contract exhibits a strong commitment to security and follows best
practices.

Section Status

Findings and Recommendations ☑ Passed

Security Assessment ☑ Passed

Functional Assessment ☑ Passed

Code Review ☑ Passed

Unit Testing ☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 8



Caramel Crowdsale

Findings and Recommendations
In the course of our audit, we conducted a detailed analysis of the CaramelCrowdsale
smart contract, uncovering several key findings and recommendations. We have also
assessed the severity levels of identified vulnerabilities and weaknesses.

Findings Status

SafeERC20 Usage: The contract properly uses SafeERC20
functions, mitigating common security risks.

☑ Passed

Reentrancy Protection: The nonReentrant modifier from
ReentrancyGuard mitigates reentrancy attacks, crucial for
protecting functions that handle payments and transfers.

☑ Passed

Role-Based Access Control: The WhitelistedRole and
WhitelistAdminRole roles enforce secure access, limiting
contributions to whitelisted users and enhancing control
over participation.

☑ Passed

Modular Structure with Inheritance: The modular design
with separate contracts for specific functions improves
readability, testing, and maintainability, making the code
easy to audit.

☑ Passed

Event Logging for Transparency: The contract emits events
for key state changes like token purchases and whitelist
updates, aiding in transparency and easier monitoring.

☑ Passed

Flexible Token Rate Management: Dynamic token rates per
ERC-20 token allow the owner to set varying rates,
minimums, and maximums, supporting multiple payment
assets.

☑ Passed

Controlled Contribution Periods: TimedCrowdsale enforces
opening and closing times, controlling the crowdsale
timeline and restricting contributions outside the intended
period.

☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 9



Caramel Crowdsale

Configurable Whitelist Validation: The useWhitelist feature
allows toggling whitelist validation, providing flexibility
between restricted and open participation modes.

☑ Passed

Potential Denial of Service in Batch Token Distribution:
The distributeTokens() function could fail due to gas limits if
the contributor list grows too large, preventing contributors
from receiving tokens.

Severity: Critical

Recommendation: Implement pagination or split
distribution calls into smaller batches, or enforce gas usage
constraints to prevent the function from reaching gas limits.

Actions: a pagination parameter was added to the
distributeTokens function.

☑ Fixed

Unused TokenData Initialization Check

Severity: High

Impact: Setting a token rate to zero would result in
getTokenAmountWithToken() division errors, which could
halt token purchase functionality and cause failed
transactions.

Recommendation (Audit team): Add a validation step in
setTokenData() to ensure non-zero rates or handle this within
the purchase functions.

Answer (Dev team): Acknowledged, this is the intended
behavior to deactivate tokens. This is controlled in the UI to
avoid conflicts.

☑ Acknowledged

Reentrancy Guard Missing in Withdrawal

Severity: High

Impact: Absence of a reentrancy guard in withdrawTokens()

☑ Fixed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 10



Caramel Crowdsale

poses a reentrancy risk for token transfers, potentially
allowing malicious actors to exploit the function.

Recommendation: Add a nonReentrant modifier to
withdrawTokens() to prevent reentrancy attacks on token
transfers.

Low Gas Optimization in Batch Processing

Severity: Medium

Impact: High gas costs in addWhitelistedBatch() and
removeWhitelistedBatch() could lead to transaction failures,
especially for larger lists.

Recommendation: Limit batch sizes or allow self-registration
of accounts with admin approval to lower gas usage.

Answer (Dev Team): this is an administrator only function,
and the contract owner can define the batch size manually.

☑ Acknowledged

The following methods should be declared external:

● openingTime()
● closingTime()
● addWhitelistAdmin(address)
● renounceWhitelistAdmin()
● addWhitelisted(address)
● removeWhitelisted(address)
● addWhitelistedBatch(address[])
● removeWhitelistedBatch(address[])
● renounceWhitelisted()
● finalize()
● withdrawTokens(address)
● balanceOf(address)
● primary()
● transferPrimary(address)
● transfer(IERC20,address,uint256)
● buyTokensWithTokens(address,uint256,address)

☑ Fixed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 11



Caramel Crowdsale

Severity: Low

Recommendation:

Use the external attribute for functions never called from the
contract, and change the location of immutable parameters
to calldata to save gas.

High-Level Assessment:

The CaramelCrowdsale contract has been thoroughly reviewed, with critical issues
resolved to ensure security and functionality. It combines robust features like
role-based access control, safe token transfer mechanisms, flexible token rate
settings, reentrancy protection, and modular design. Overall, CaramelCrowdsale is
well-architected for secure, efficient token sales, aligning with best practices and
prepared for effective deployment.

Status:☑ Fixed / Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 12



Caramel Crowdsale

Security Assessment
The security assessment of this smart contract reveals a strong adherence to
fundamental security best practices. The contract demonstrates rigorous input
validation, robust access control mechanisms, and safeguards against reentrancy
vulnerabilities.

Input Validation: The contract has adequate input validation
measures in place. It checks for valid addresses, non-zero wei amounts,
and non-zero token rates before processing transactions.

☑ Passed

Access Control: The contract uses access control through modifiers
like onlyOwner to restrict certain functions to the owner of the
contract. This is a good security practice to ensure that only authorized
parties can modify critical parameters.

☑ Passed

Reentrancy Vulnerabilities: The contract includes a nonReentrant
modifier, which helps protect against reentrancy attacks by preventing
multiple calls to critical functions within the same transaction.

☑ Passed

Overflow and Underflow Vulnerabilities: The contract is written in
Solidity 0.8.2, which natively incorporates protection for arithmetic
operations.

☑ Passed

Fallback Function: The contract implements a fallback function that
allows users to purchase tokens by sending ether to the contract.

☑ Passed

Overall, the contract has considered various security best practices to mitigate
common vulnerabilities.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 13



Caramel Crowdsale

Functional Assessment
Based on the provided requirements, here’s an assessment of the CaramelCrowdsale
contract’s functionality:

Receive Contributions in Ether or the Native Coin of the Blockchain:

The contract allows Ether contributions, enabling supporters to send
funds in the blockchain’s native currency, compatible with chains
where Ether or an equivalent native coin is used.

☑ Passed

Receive Contributions in Any ERC-20 Token:

The contract supports multiple ERC-20 tokens, allowing contributions
with any token added as a payment option. The owner can configure
rates, minimum andmaximum contributions for each supported
ERC-20 token.

☑ Passed

Option to Restrict Participation to Whitelisted Contributors Only:

The contract includes a flexible whitelisting mechanism. The owner
can enforce whitelist restrictions to ensure that only approved
contributors can participate.

☑ Passed

Distribute Tokens to Supporters Automatically During the
Crowdsale, or in Batches at Its Finalization:

The contract offers multiple delivery modes. Tokens can be delivered
immediately or held for batch distribution, allowing owners flexibility in
delivery timing. The PostDeliveryCrowdsale feature allows tokens to be
distributed after finalization or upon individual withdrawal by
contributors.

☑ Passed

Tokens Can Optionally Be Distributed Directly to a UBE Staking
Contract:

☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 14



Caramel Crowdsale

The contract includes an optional feature for automatic transfer to a
UBE staking contract. If a staking contract is specified, tokens are sent
to the staking contract for contributors instead of directly to their
wallets.

Receive the Funds Directly in Your ETH Wallet:

Funds raised during the crowdsale are transferred directly to the
specified wallet, ensuring that contributions are received in real-time
by the crowdsale organizer’s wallet.

☑ Passed

ERC-20 Token Distribution:

ERC-20 tokens are distributed to contributors using safeTransfer
methods from the SafeERC20 library, ensuring compatibility with
ERC-20 standards.

☑ Passed

Allowance Crowdsale:

The contract follows an allowance model, where tokens are held by a
designated distribution wallet and approved for transfer to the
crowdsale contract. This ensures token availability for distribution
without transferring ownership.

☑ Passed

Opening and Closing Dates:

The contract includes an optional TimedCrowdsale mechanism,
allowing the owner to set specific opening and closing dates.
Contributions are restricted to within this period.

☑ Passed

Ability to Finalize the Crowdsale:

The contract can be finalized by the owner once the crowdsale ends.
Finalization emits an event and prevents any further token purchases,
which aligns with standard crowdsale finalization requirements.

☑ Passed

The CaramelCrowdsale contract meets all specified requirements. It provides a
versatile and secure framework for running a crowdsale with flexible contribution
and distribution options, token support, whitelisting, and automated or batch-based
delivery. The contract can be integrated with a user-facing GUI and supports custom

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 15



Caramel Crowdsale

configurations for ERC-20 tokens and Ether, making it suitable for various crowdsale
structures.

Status:☑ Passed

Code Review
The provided smart contract is well-structured and follows many common best
practices for writing Solidity smart contracts. Here are some key observations and
areas of review:

Pragmas and Compiler Version: The contract begins with
appropriate version pragma directives specifying the compiler
version. This ensures compatibility and avoids potential issues with
future compiler updates.

☑ Passed

State Variables: The contract defines state variables for owner,
token, _rate, and _wallet. These variables are well-named and clearly
indicate their purpose.

☑ Passed

Constructor: The constructor function is used to initialize the
contract state. It sets the initial values for the owner, token, _rate,
and _wallet variables.

☑ Passed

Events: Events like TokensPurchased and RateChanged are defined
and correctly emitted within the contract functions.

☑ Passed

Fallback Function: The contract includes a fallback function that
directs incoming Ether to the buyTokens function, making it
convenient for users to purchase tokens.

☑ Passed

Functions: The contract defines important functions which are
well-documented with comments, making it clear what each
function does and how it should be used.

☑ Passed

Modifiers Usage: The onlyOwner and whenNotPaused modifier are ☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 16



Caramel Crowdsale

appropriately used to restrict access to functions.

Error Handling: The contract includes some basic error handling
using require statements to check conditions before executing
certain actions. However, it could benefit frommore comprehensive
error handling to ensure that the contract behaves predictably in all
scenarios.

☑ Passed

Security Considerations: The contract appears to have security
measures in place, also, additional security audits and testing are
already done to ensure it's robust against potential vulnerabilities
like reentrancy attacks, and other common pitfalls.

☑ Passed

Documentation: The contract includes comments that explain the
purpose and functionality of various parts of the code. However,
further inline comments and a high-level contract overview would
improve code readability and maintainability.

☑ Passed

In summary, the provided smart contract exhibits good coding practices and
includes important features like access control, events, and a fallback function for
ease of use.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 17



Caramel Crowdsale

Unit Testing
During the audit of the smart contract, more than 200 unit test cases were
conducted to verify its functionality and ensure that it behaves as expected in
different scenarios. The testing process involved the use of unit testing scripts,
primarily utilizing the @openzeppelin/test-helpers library, and the Mocha testing
framework.

1. Whitelist Management

● Description: Tests the access control functionality, specifically enforcing
participation restrictions based on whitelist status.

● Tests:
○ Verifies that only whitelisted addresses can participate.
○ Confirms that only admins can add/remove whitelisted addresses.
○ Tests batch whitelisting and un-whitelisting.
○ Ensures purchase acceptance/rejection based on whitelist status.

2. Affiliate Program

● Description: Assesses affiliate program features, such as commission
handling, blacklisting, and pausing functionality.

● Tests:
○ Ensures affiliates receive commissions and admins can set rates.
○ Validates blacklisting to prevent commissions for blacklisted affiliates.
○ Tests pausing/unpausing the program to control commission flows.

3. Allowance Crowdsale

● Description: Tests functionality related to managing token allowances and
enforcing limits on contributions.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 18



Caramel Crowdsale

● Tests:
○ Confirms that the correct token allowance is reported.
○ Checks that token wallet creation reverts if the address is zero.
○ Validates fund forwarding, allowance limits, and event logging during

high-level purchases.

4. Ether Contribution Limits

● Description: Verifies the handling of minimum andmaximum contribution
limits for Ether-based contributions.

● Tests:
○ Ensures that Ether contributions respect the configured minimum and

maximum limits.
○ Validates admin-only access for setting contribution boundaries.

5. Factory and Token Management

● Description: Tests the factory contract’s ability to create tokens, configure
rewards, and manage factory settings.

● Tests:
○ Confirms master and manager roles for token creation.
○ Validates fee management and updates to master addresses.
○ Tests deployment under various reward ratios and ensures correct

token creation behavior.

6. Crowdsale Finalization

● Description: Verifies the finalization process, ensuring that actions like token
distribution are managed correctly post-crowdsale.

● Tests:
○ Ensures only the owner can finalize the crowdsale.
○ Verifies that tokens cannot be bought after finalization.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 19



Caramel Crowdsale

○ Tests finalization restrictions to prevent multiple finalizations.

7. Post-Delivery Crowdsale

● Description: Assesses delayed token delivery, including individual withdrawals
and batch distributions.

● Tests:
○ Validates that tokens are held until crowdsale ends.
○ Ensures token distribution to either contributors or a staking contract.
○ Tests batch distribution and multiple withdrawal prevention.

8. Rate Testing

● Description: Tests token distribution at various rate configurations, from large
to fractional rates, across tokens with different decimals.

● Tests:
○ Verifies that rates above, equal to, and below 1 behave as expected for

tokens with varying decimals.
○ Tests contributions directly and through purchase functions for

multiple rate scenarios.

9. Timed Crowdsale

● Description: Tests the timed crowdsale functionality to ensure proper
enforcement of opening and closing times.

● Tests:
○ Confirms that contributions are only accepted within specified time

frames.
○ Tests extending and updating the closing time.
○ Validates that timed contributions reject payments outside allowed

periods.

10. Edge Case Handling

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 20



Caramel Crowdsale

● Description: Ensures robustness by testing for various edge cases and
unusual conditions.

● Tests:
○ Verifies behavior when crowdsale runs out of tokens.
○ Tests handling of maximum Ether contributions.
○ Assesses behavior with zero and extreme token balances or rates.
○ Simulates contributions frommultiple participants and non-approval

tokens.

11. Ownership and Access Control

● Description: Tests ownership transfer and renouncement for secure access
control.

● Tests:
○ Ensures only the owner can transfer ownership.
○ Confirms that ownership renouncement prevents non-owners from

controlling the contract.

Each category’s tests collectively confirm that the contract’s core functionality, access
control, and edge case handling are thoroughly assessed. This broad coverage
supports the contract’s compliance with the expected functional requirements.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 21



Caramel Crowdsale

Conclusion
In summary, the audit of the smart contract: Caramel Crowdsale, has been
conducted comprehensively. Here are the key findings and our recommendations:

● The global security ranking is satisfactory achieving a score of 9 / 10
● One critical and one high-severity issue were identified in the code, and it has

been effectively resolved in the revised contract code.

All audited contracts exhibit a strong commitment to security and adhering to best
practices.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 22



Caramel Crowdsale

Final
Remarks

All audit findings have been diligently addressed to enhance the contract's security
and functionality, thereby ensuring a smooth and transparent operation for our
users. We are committed to delivering a product of the highest quality and efficiency,
and this audit represents a significant step in that direction.

As part of our ongoing commitment to user safety, we strongly encourage our users
to conduct their own research, run tests, and perform audits before deploying this
product in a production environment. Your due diligence plays a crucial role in
ensuring the reliability and security of the products you choose to use.

We remain dedicated to providing innovative and secure solutions to meet your
blockchain and smart contract needs. Stay informed, stay secure, and thank you for
choosing our services.

___

WP Smart Contracts Team

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 23


