
CROWDSALE, SECURITY VAULT & AIRDROP

WP Smart Contracts
Smart Contract Audits

___

Sep 2023



INTRODUCTION

At WPSmartContracts.com, our commitment to delivering solutions to our users and
the demands of a dynamic market has been our driving force. We are proud of our
journey, which has led us to develop a WordPress plugin that adapts to the evolving
needs of our user community.

With the release of WPSmartContracts 2.0, we have marked a significant milestone in
the evolution of our WP Smart Contracts project. In our pursuit of excellence, during
September 2023, we embarked on a series of audits for the third batch of smart
contracts within WPSmartContracts. These audits encompassed critical contracts,
including:

● Bubblegum Crowdsale
● Coconut Safe Vault
● Guava Airdrop
● Tiramisu Whitelisted Airdrop

This report serves as a summary of the results obtained from these audits. Within its
pages, you will find technical analyses, necessary corrections, and recommendations.

Thank you for entrusting us with your smart contract needs.

Sincerely,
WP Smart Contracts team

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 2



Executive Summary
Below is the global security ranking for all audited smart contracts.

Smart Contract Ranking* Status

Bubblegum Crowdsale 9 / 10 ☑ Passed

Coconut Vault 9 / 10 ☑ Passed

Guava Airdrop 9 / 10 ☑ Passed

Tiramisu Whitelisted Airdrop 9 / 10 ☑ Passed

On the security ranking scale, 0 represents the most insecure while 10 signifies the
highest level of security.

Overall assessment

All contracts demonstrate a commitment to security, and therefore are ready for
mainnet deployment.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 3



Scope of
Audit

This audit was conducted on September, 2023, we reviewed the following smart
contracts and their dependencies:

Bubblegum Crowdsale Contract

● Source: Bubblegum.sol
● SPDX License Identifier: MIT
● Solidity Version: ^0.8.2

Coconut Vault Contract

● Source: Coconut.sol
● SPDX License Identifier: MIT
● Solidity Version: ^0.8.2

Guava Contract

● Source: Guava.sol
● SPDX License Identifier: MIT
● Solidity Version: ^0.8.2

Tiramisu Contract

● Source: Tiramisu.sol
● SPDX License Identifier: MIT
● Solidity Version: ^0.8.2

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 4

https://gist.github.com/WPSmartContracts/4e82f76a9501323473f778eeba767a4d
https://gist.github.com/WPSmartContracts/9f6c26b918acfde0bf86a5a31f42079a
https://gist.github.com/WPSmartContracts/16a3f48eabd460b1bc31a2749e0782bf
https://gist.github.com/WPSmartContracts/fc9f60d3b5442e48b9f13079592eaec8


Methodology
The audit process included an in-depth assessment of the codebase, with a focus on
ensuring the security, functionality, and robustness of these contracts. Our audit
encompassed the following key aspects:

External Audits: EtherAuthority conducted external audits to ensure an additional
layer of security scrutiny and validation.

Manual Code Review: Our team of experts conducted a meticulous manual code
review to assess the codebase for proper functionality, adherence to best practices,
and identification of common vulnerabilities or weaknesses. This process involved a
line-by-line analysis of the smart contracts.

Unit Testing: We performed a series of extensive unit tests on the smart contracts to
verify their functionality and ensure that they behave as expected under various
scenarios. These tests involved typical use cases, boundary conditions, and edge
cases to assess the contract's reliability.

Automated Audit Tools: We leveraged automated audit tools, including Slither,
Solhint, and Solidity Static Analysis, to conduct a systematic assessment of the
codebase. These tools helped identify potential issues, security vulnerabilities, and
areas for improvement.

AI Tools: We employed advanced AI-based analysis tools to further verify the
presence of vulnerabilities, logic failures, or any unusual patterns within the code.
These tools contributed to a comprehensive evaluation of the contracts' security.

Our audit aimed to provide a holistic assessment of the smart contracts, ensuring
that they meet the highest standards of security and functionality.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 5



External Audit
by EtherAuthority.io

EtherAuthority was contracted by the WP Smart Contracts team to perform the
Security audit of the WP Smart Contracts code. The audit has been performed using
manual analysis as well as using automated software tools.

The purpose of the audit was to address the following:

● Ensure that all claimed functions exist and function correctly.
● Identify any security vulnerabilities that may be present in the smart contract.

According to the standard audit assessment, Customer`s solidity smart
contracts are “Secured”.

They have used all possible tests based on given objects as files. They had observed
two Informational severity issues in the smart contracts, but those are not critical
ones and were all fixed. So, the smart contracts are ready for mainnet deployment.

Read the full Ether Authority Audit Report

Why is the audit result "Secured" and not "Well-Secured"?

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 6

https://wpsmartcontracts.com/audits/WP_Smart_Contracts_EtherAuthority_Audit_Report-03.pdf


The EtherAuthority team explains that to achieve the level of "well-secured," a
contract must be fully decentralized without any human influence or owner control.

Contract owners should make their own decisions regarding retaining ownership
based on their business rules and the nature of the smart contracts. In some cases,
renouncing ownership of the contracts may not be advisable.

Learn more about decentralization

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 7

https://wpsmartcontracts.com/docs/doc-decentralization.php


Bubblegum Crowdsale

Bubblegum Crowdsale
Internal Audit Results

The "Bubblegum Crowdsale" smart contract is a robust and versatile
Ethereum-Virtual-Machine-based solution designed to facilitate token sales in a
secure and transparent manner. Built as an extension of the base "Crowdsale"
contract, Bubblegum Crowdsale inherits essential functionalities while introducing
valuable features that enhance the user experience and token sale management.

Bubblegum Crowdsale empowers project owners and token issuers to launch and
manage Initial Coin Offerings (ICOs) and token sales with confidence and flexibility. It
leverages the reliability of the underlying "Crowdsale" contract, a trusted and audited
foundation for conducting token sales, while also offering specific advantages
tailored to the needs of individual projects.

Key features of the Bubblegum Crowdsale contract include the ability to specify a
separate token holding wallet, transparent tracking of remaining tokens available for
purchase, and secure token distribution. These features contribute to an elevated
level of trust and transparency for both project teams and participants, ultimately
fostering a secure and efficient token sale environment.

In this report, we provide a comprehensive audit of the Bubblegum Crowdsale smart
contract, detailing its structure, functionalities, and security considerations. Our
analysis aims to ensure the contract's integrity, security, and suitability for its
intended purpose, offering valuable insights and recommendations for its continued
safe and effective utilization.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 8



Bubblegum Crowdsale

Audit Results Summary

Bubblegum Crowdsale: 9 / 10

We found 1 low severity issue, which was fixed in the revised contract code.

The Crowdsale contract exhibits a strong commitment to security and follows best
practices.

Section Status

External Audit ☑ Passed

Findings and Recommendations ☑ Passed

Security Assessment ☑ Passed

Functional Assessment ☑ Passed

Code Review ☑ Passed

Unit Testing ☑ Passed

The contract demonstrates a commitment to security, and therefore is ready for
mainnet deployment.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 9



Bubblegum Crowdsale

Findings and Recommendations
In the course of our audit, we conducted a detailed analysis of the
BubblegumCrowdsale smart contract, uncovering several key findings and
recommendations. We have also assessed the severity levels of identified
vulnerabilities and weaknesses.

Findings Status

Inheritance of External Contracts: The contract inherits external
contracts from OpenZeppelin, which is considered a good security
practice. No immediate vulnerabilities were found in this aspect.

☑ Passed

SafeERC20 Usage: The contract properly uses SafeERC20 functions,
mitigating common security risks.

☑ Passed

Rate and Wallet Management: The contract allows rate and wallet
address adjustments, offering flexibility. Enhancements are needed
for stricter conditions post-crowdsale. This has been addressed and
fixed.

☑ Fixed

Fallback Function: The fallback function for token purchases is
correctly implemented with no immediate security concerns.

☑ Passed

Pausing and Unpausing: Pausing and unpausing functions serve for
emergencies and ICO completion.

☑ Passed

Documentation: The presence of explanatory comments throughout
the contract code enhances transparency and code readability.

☑ Passed

Inheritance from Crowdsale: The BubblegumCrowdsale contract
inherits from the Crowdsale contract, a prudent practice to leverage
the security and functionality of its parent contract.

☑ Passed

Additional Constructor Parameter: The extension of the constructor
to include an extra parameter, distributionWallet_, facilitates token
holding and allowances.

☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 10



Bubblegum Crowdsale

Token Wallet: The inclusion of a function to retrieve the token
holding wallet address promotes transparency.

☑ Passed

Remaining Tokens Function: The remainingTokens() function
provides transparency for participants.

☑ Passed

Token Transfer: The _deliverTokens function ensures that tokens are
distributed from the specified wallet address, reinforcing the
intended token distribution process.

☑ Passed

Recommendations:

Strengthen rate and wallet management mechanisms by enforcing stricter
conditions for adjustments, especially after the crowdsale starts. This has been
addressed and fixed.

High-Level Assessment:

The Bubblegum Crowdsale contract exhibits strong adherence to security best
practices and well-structured code. It provides essential functionality for conducting
token sales while allowing for flexibility in rate adjustments and wallet management.

In conclusion, the contract is well-structured and secure. It also inherits
dependencies from a well-known smart contract suite in the market, ensuring that
these contracts are used appropriately to ensure their security and functionality.

Status:☑ Fixed / Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 11



Bubblegum Crowdsale

Security Assessment
The security assessment of this smart contract reveals a strong adherence to
fundamental security best practices. The contract demonstrates rigorous input
validation, robust access control mechanisms, and safeguards against reentrancy
vulnerabilities.

Input Validation: The contract has adequate input validation
measures in place. It checks for valid addresses, non-zero wei amounts,
and non-zero token rates before processing transactions.

☑ Passed

Access Control: The contract uses access control through modifiers
like onlyOwner to restrict certain functions to the owner of the
contract. This is a good security practice to ensure that only authorized
parties can modify critical parameters.

☑ Passed

Reentrancy Vulnerabilities: The contract includes a nonReentrant
modifier, which helps protect against reentrancy attacks by preventing
multiple calls to critical functions within the same transaction.

☑ Passed

Overflow and Underflow Vulnerabilities: The contract is written in
Solidity 0.8.2, which natively incorporates protection for arithmetic
operations.

☑ Passed

Fallback Function: The contract implements a fallback function that
allows users to purchase tokens by sending ether to the contract.

☑ Passed

Overall, the contract has considered various security best practices to mitigate
common vulnerabilities.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 12



Bubblegum Crowdsale

Functional Assessment
For this assessment, we consider the intended use of the code to be as follows:

1. Conduct a crowdsale with any ERC-20 compatible token.
2. The crowdsale will receive payments in the native coin of the selected

blockchain at a fixed rate.
3. The owner of the ICO will need to approve funds from their authorized

account.
4. Payments made during the crowdsale will be directed to a predefined wallet

specified by the owner.
5. The owner has the capability to pause and unpause the ICO at will.

Functional Assessment Results:

1. The contract allows the owner to set the token address, which means
you can conduct a crowdsale with any ERC-20 compatible token.

☑ Passed

2. Payments occur via the buyTokens function, where users send Ether
with a beneficiary address, receiving tokens at the contract's rate. The
contract's fallback function automates token purchases when users
send Ether to the contract's address without specifying a function.

☑ Passed

3. The contract uses the allowance mechanism, where the owner
pre-approves a certain amount of tokens to be spent by the crowdsale
contract. This is handled in the _deliverTokens function.

☑ Passed

4. Payments made during the crowdsale are forwarded to the address
specified as the wallet during contract deployment. The owner can
change this wallet address using the setWallet function.

☑ Passed

5. The contract includes a pause and unpause function that allows the
owner to pause and resume the ICO as needed. This helps ensure that
the ICO can be paused when it's finished or for any other reason.

☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 13



Bubblegum Crowdsale

Overall, based on the intended use cases, the Bubblegum Crowdsale smart contract
fulfills its requirements. It allows for the sale of tokens, tracks funds raised, and
provides functionality for the owner to manage the crowdsale effectively.

Status:☑ Passed

Code Review
The provided smart contract is well-structured and follows many common best
practices for writing Solidity smart contracts. Here are some key observations and
areas of review:

Pragmas and Compiler Version: The contract begins with
appropriate version pragma directives specifying the compiler
version. This ensures compatibility and avoids potential issues with
future compiler updates.

☑ Passed

State Variables: The contract defines state variables for owner,
token, _rate, and _wallet. These variables are well-named and clearly
indicate their purpose.

☑ Passed

Constructor: The constructor function is used to initialize the
contract state. It sets the initial values for the owner, token, _rate,
and _wallet variables.

☑ Passed

Events: Events like TokensPurchased and RateChanged are defined
and correctly emitted within the contract functions.

☑ Passed

Fallback Function: The contract includes a fallback function that
directs incoming Ether to the buyTokens function, making it
convenient for users to purchase tokens.

☑ Passed

Functions: The contract defines important functions which are
well-documented with comments, making it clear what each

☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 14



Bubblegum Crowdsale

function does and how it should be used.

Modifiers Usage: The onlyOwner and whenNotPaused modifier are
appropriately used to restrict access to functions.

☑ Passed

Error Handling: The contract includes some basic error handling
using require statements to check conditions before executing
certain actions. However, it could benefit frommore comprehensive
error handling to ensure that the contract behaves predictably in all
scenarios.

☑ Passed

Security Considerations: The contract appears to have security
measures in place, also, additional security audits and testing are
already done to ensure it's robust against potential vulnerabilities
like reentrancy attacks, and other common pitfalls.

☑ Passed

Documentation: The contract includes comments that explain the
purpose and functionality of various parts of the code. However,
further inline comments and a high-level contract overview would
improve code readability and maintainability.

☑ Passed

In summary, the provided smart contract exhibits good coding practices and
includes important features like access control, events, and a fallback function for
ease of use.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 15



Bubblegum Crowdsale

Unit Testing
During the audit of the smart contract, a series of unit tests were conducted to verify
its functionality and ensure that it behaves as expected in different scenarios. The
testing process involved the use of unit testing scripts, primarily utilizing the
@openzeppelin/test-helpers library, and the Mocha testing framework.

Test Cases. The following test cases scenarios were tested:

Null Token Check ☑ Passed

Zero Rate Check ☑ Passed

Null Wallet Check ☑ Passed

Crowdsale Initialization ☑ Passed

Payment Acceptance ☑ Passed

Payment Rejection ☑ Passed

Beneficiary Check ☑ Passed

Wei Raised Calculation ☑ Passed

Token Purchase and Distribution ☑ Passed

Funds Forwarding ☑ Passed

Allowance Crowdsale - Testing Cases. The following allowance-crowdsale cases
were tested:

TokenWallet Check ☑ Passed

Accepting Sends ☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 16



Bubblegum Crowdsale

Accepting Payments ☑ Passed

High-Level Purchase:
● Logging
● Token Allocation
● Funds Forwarding

☑ Passed

Remaining Allowance Calculation ☑ Passed

Creation Reverts (Zero Address TokenWallet) ☑ Passed

Crowdsale Flow ☑ Passed

RateChanged Event ☑ Passed

Flow Changing Token ☑ Passed

Border Edge - Testing Cases

The following border - edge cases were tested:

Should revert when the crowdsale runs out of tokens to sell ☑ Passed

Test purchasing tokens when the crowdsale has a very small token
balance left

☑ Passed

A crowdsale was created with a rate and an allowance of 1 token. ☑ Passed

A crowdsale was created with a minimum rate ☑ Passed

Test the crowdsale when the rate is set to their minimum values ☑ Passed

Test the crowdsale when the rate is set to a big value ☑ Passed

A crowdsale was created with a high rate ☑ Passed

Simulate contributions frommultiple contributors ☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 17



Bubblegum Crowdsale

These successful test cases demonstrate that the contract functions as intended and
that it can handle various scenarios effectively. The contract exhibited robust
performance and security in all tested scenarios.

Status:☑ Passed

Conclusion
In summary, the audit of the smart contract: Bubblegum Crowdsale, has been
conducted comprehensively. Here are the key findings and our recommendations:

● The global security ranking for Bubblegum Crowdsale is satisfactory achieving
a score of 9 / 10

● One low-severity issue was identified in the code, and it has been effectively
resolved in the revised contract code.

● The external audit conducted by Ether Authority has concluded, also that the
smart contract is “Secured” and it is ready for mainnet deployment.

All audited contracts exhibit a strong commitment to security, adhering to best
practices and demonstrating readiness for mainnet deployment.

In conclusion, the audited smart contracts are in a suitable state for deployment on
the mainnet, and the low-severity issue has been successfully resolved. We
recommend proceeding with their deployment with confidence.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 18



Coconut Vault

Coconut Vault
Internal Audit Results

Coconut Vault addresses the critical need for security and accessibility in the
blockchain and cryptocurrency landscape. In a world of unpredictable
circumstances, it provides a robust solution to protect digital assets. This smart
contract empowers asset holders with ownership control and the ability to set an
expiration time, ensuring access during emergencies or key loss situations.
CoconutVault bridges the gap between asset protection and peace of mind, offering
users security and reliable access to their digital wealth, even in times of uncertainty.

The CoconutVault smart contract is designed to securely store and manage various
types of assets, including native coins, ERC-20 tokens, ERC-721 NFTs, and ERC-1155
NFTs. It offers functionalities for depositing and withdrawing these assets, as well as
managing trusted accounts in case of emergencies.

The contract includes features like tracking the last owner activity and defining an
expiration time for owner inactivity. Trusted accounts can be designated to withdraw
assets from the vault if the owner is inactive for a specified duration.

Users can deposit native coins, ERC-20 tokens, ERC-721 NFTs, and ERC-1155 NFTs into
the vault. The contract ensures that the last owner activity is updated when deposits
are made.

Withdrawals of assets, whether native coins, ERC-20 tokens, or NFTs, can be initiated
by the owner or trusted accounts in case of expiration. The contract also allows the
owner to add or update trusted accounts for emergency asset withdrawal.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 19



Coconut Vault

Audit Results Summary

Coconut Vault: 9 / 10

We found 1 low severity issue, which was fixed in the revised contract code.

The Coconut contract exhibits a strong commitment to security and follows best
practices.

Section Status

External Audit ☑ Passed

Findings and Recommendations ☑ Passed

Security Assessment ☑ Passed

Functional Assessment ☑ Passed

Code Review ☑ Passed

Unit Testing ☑ Passed

The contract demonstrates a commitment to security, and therefore is ready for
mainnet deployment.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 20



Coconut Vault

Findings and Recommendations
In our audit of the CoconutVault smart contract, we focused on specific functions
and aspects of the contract to verify common vulnerabilities and ensure the
robustness of its design.

Findings Status

Inheritance of External Contracts: The CoconutVault contract
inherits external contracts like ERC721Holder, ERC1155Holder,
Ownable, and ReentrancyGuard, benefiting from their features
to enhance security and minimize risks.

☑ Passed

SafeERC20 Usage: The contract utilizes SafeERC20 for
handling ERC20 tokens, which is a secure practice to prevent
potential vulnerabilities related to token transfers.

☑ Passed

Use of Common Libraries to Handle ERC721, ERC1155, ERC20:
CoconutVault utilizes standard libraries to handle various
token types, enhancing security and ensuring compatibility
across token standards.

☑ Passed

Fallback Function: The contract's fallback function is
designed to handle Ether deposits efficiently.

☑ Passed

Functions Review: The deposit and withdrawal functions have
been carefully reviewed. These functions are crucial for the
core functionality of the contract, and no critical vulnerabilities
were detected.

☑ Passed

Additional Constructor Parameter: The addition of a
constructor parameter to specify the expiration time during
contract deployment would enhance flexibility and allow users
to set a custom expiration period, aligning with their specific
needs.

☑ Fixed

Documentation:While the contract's functions and features ☑ Fixed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 21



Coconut Vault

are well-implemented, improving documentation with
detailed usage instructions, examples, and explanations would
enhance user understanding and interaction.

Based on the findings, recommendations and fixes, we rate the CoconutVault smart
contract as a 9 out of 10 in terms of security. It demonstrates a robust design, inherits
external contracts securely, uses safe practices for handling tokens, and employs
standard libraries for enhanced security. The recommended improvement related to
documentation was fixed as well. Overall, it exhibits a high level of security and best
practices.

Status:☑ Fixed / Passed

Security Assessment
The security assessment of this smart contract reveals a strong adherence to
fundamental security best practices. The contract demonstrates rigorous input
validation, robust access control mechanisms, and safeguards against reentrancy
vulnerabilities.

Input Validation: The CoconutVault contract effectively employs input
validation to ensure that functions receive valid and secure data
inputs. This safeguards against potential vulnerabilities that may arise
from improperly formatted or malicious inputs, enhancing the
contract's overall security.

☑ Passed

Access Control: CoconutVault meticulously implements access
control mechanisms to restrict who can execute critical functions.
Functions like changeTrustedAccount, setExpiration, and keepAlive are
exclusively accessible to the contract owner, enhancing security by
preventing unauthorized access to vital functions and assets.

☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 22



Coconut Vault

Reentrancy Vulnerabilities: CoconutVault proactively addresses
reentrancy vulnerabilities using the OpenZeppelin ReentrancyGuard
contract. This ensures that external calls cannot re-enter the contract
during critical operations, significantly reducing the risk of reentrancy
attacks and bolstering security.

☑ Passed

Overflow and Underflow Vulnerabilities: The contract is written in
Solidity 0.8.2, which natively incorporates protection for arithmetic
operations.

☑ Passed

Fallback Function: CoconutVault's fallback function efficiently handles
Ether deposits without introducing vulnerabilities. It seamlessly
records Ether transfers as asset deposits, contributing to the contract's
usability and security. The fallback function fulfills its purpose without
compromising the contract's integrity.

☑ Passed

In summary, the CoconutVault smart contract exhibits a high level of security and
implements best practices across various security-related aspects.

Status:☑ Passed

Functional Assessment
For this assessment, we consider the intended use of the code to be as follows:

1. The contract is designed to securely manage various types of assets, including
native coins (Ether), ERC20 tokens, ERC-721 tokens, and ERC-1155 tokens.

2. The owner can set an expiration time, allowing trusted accounts to withdraw
funds after this period elapses.

3. The owner can "keep alive" the contract by preventing expiration through
regular deposits or interactions.

4. The owner has the capability to add or remove trusted accounts at any time.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 23



Coconut Vault

5. Anyone can deposit into the contract, but only the owner can initiate
withdrawals at any time. Trusted accounts can withdraw assets only after the
expiration time has passed.

6. Withdrawals are restricted to specific parties, as specified above.

Functional Assessment Results:

1. The CoconutVault contract serves as a secure repository for various
assets, including native coins (Ether), ERC-20 tokens, ERC-721 NFTs,
and ERC-1155 NFTs. It provides crucial functionalities such as deposits,
withdrawals, and trusted account management during emergencies.

☑ Passed

2. The contract allows the owner to set an expiration time
(expirationLapse) in seconds. Trusted accounts can withdraw funds
after this expiration period.

☑ Passed

3. The keepAlive function enables the owner to update the last activity
timestamp, preventing the contract from expiring as long as the
owner interacts with it periodically.

☑ Passed

4. The changeTrustedAccount function permits the owner to add or
remove trusted accounts at any time.

☑ Passed

5. The contract includes functions for depositing various asset types,
such as native coins, ERC-20 tokens, ERC-721 NFTs, and ERC-1155 NFTs.
Only the owner can initiate withdrawals at any time, while trusted
accounts can withdraw after the expiration time has passed.

☑ Passed

6. The canWithdrawmodifier restricts withdrawals to the owner or
trusted accounts only when the contract has reached its expiration
time. Unauthorized withdrawals are prevented.

☑ Passed

Overall, based on the code and the provided requirements, the CoconutVault
contract aligns with the intended use and effectively fulfills the specified
requirements for secure asset management and access control.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 24



Coconut Vault

Code Review
The provided smart contract is well-structured and follows many common best
practices for writing Solidity smart contracts. Here are some key observations and
areas of review:

Pragmas and Compiler Version: The contract specifies the
required compiler version in the pragma statement (`pragma
solidity ^0.8.2;`), which is a good practice.

☑ Passed

State Variables: The contract uses state variables effectively to
store critical information such as `lastActivity`,
`expirationLapse`, and `trustedAccounts`.

☑ Passed

Constructor: The constructor is well-implemented and
initializes the contract state with the provided expiration time
and owner address. However, it would be beneficial to include
more descriptive variable names for clarity (e.g.,
`expirationTime` instead of `lapse_`).

☑ Fixed

Events: The contract emits events to provide transparency and
facilitate external monitoring of contract activities. Event
names are clear and follow best practices.

☑ Passed

Fallback Function: The fallback function is implemented to
handle Ether deposits efficiently. It also updates the last
activity timestamp, ensuring that deposits keep the contract
"alive."

☑ Passed

Functions: Functions are appropriately named and follow a
consistent naming convention. The purpose and functionality
of each function are well-documented, enhancing code
readability.

☑ Passed

Modifiers Usage: The contract uses modifiers such as
`onlyOwner` and `nonReentrant` to control access to specific
functions, promoting security and access control.

☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 25



Coconut Vault

Error Handling: The contract includes `require` statements to
validate input conditions and handle potential errors
gracefully. Error messages provide clear and informative
feedback to users.

☑ Passed

Security Considerations: The contract leverages
OpenZeppelin libraries for secure token handling, which is a
security best practice. Access control mechanisms are in place
to restrict who can withdraw funds and when.

☑ Passed

Documentation: The contract is well-documented with inline
comments, explaining the purpose and functionality of each
section and function. However, there is room for improvement
in terms of more detailed documentation, including
explanations of the contract's overall design and how it meets
its intended use cases.

☑ Fixed

Overall, the CoconutVault contract demonstrates good coding practices, effective use
of state variables, and attention to security and access control. The documentation
was improved to provide a more comprehensive understanding of the contract's
design.

Unit Testing
During the audit, a comprehensive set of test cases were executed to verify the
functionality and security of the CoconutVault contract. The test cases covered
various aspects of the contract, including basic data, activity updates, handling of
Ether and tokens, beneficiaries, withdrawals, expiration scenarios, and edge cases.
This was achieved primarily utilizing the @openzeppelin/test-helpers library, and the
Mocha testing framework.

Default expiration is one year in seconds. ☑ Passed

Last activity timestamp is valid. ☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 26



Coconut Vault

Contract creator is the owner. ☑ Passed

Update expiration. ☑ Passed

Keep the contract alive. ☑ Passed

Send funds directly. ☑ Passed

Deposit assets. ☑ Passed

Withdraw assets. ☑ Passed

Modify trusted accounts. ☑ Passed

Owner exclusive right to change expiration. ☑ Passed

Only the owner can prevent expiration. ☑ Passed

Sending Ether:

Owner sends Ether. ☑ Passed

Non-owner send Ether. ☑ Passed

Sending Ether via `deposit()`:

Owner initiates. ☑ Passed

Non-owner initiates. ☑ Passed

Beneficiaries:

Initial absence of beneficiaries. ☑ Passed

Owner addition of beneficiaries. ☑ Passed

Beneficiary removal: owner only. ☑ Passed

Ether withdrawal:

Owner and trusted accounts post-expiration. ☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 27



Coconut Vault

Beneficiary barred pre-expiration. ☑ Passed

Handling scenarios after expiration:

Owner withdrawal. ☑ Passed

Beneficiaries prohibited pre-year. ☑ Passed

Beneficiary eligible after a year. ☑ Passed

Revoking beneficiaries, waiting a year. ☑ Passed

Restoring revoked beneficiary, allowing withdrawal. ☑ Passed

Sending tokens directly. ☑ Passed

Sending tokens using `tokenDeposit()`:

Owner sends. ☑ Passed

Non-owner sends. ☑ Passed

Token withdrawal: Similar to Ether withdrawal handling. ☑ Passed

Sending ERC-721 tokens directly. ☑ Passed

Sending ERC-721 tokens via `erc721Deposit()`:

Owner sends. ☑ Passed

Non-owner sends. ☑ Passed

Token withdrawal: Similar to Ether withdrawal handling. ☑ Passed

Sending ERC-1155 tokens directly. ☑ Passed

Sending ERC-1155 tokens via `erc1155Deposit()`:

Owner sends. ☑ Passed

Non-owner sends. ☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 28



Coconut Vault

Token withdrawal: Similar to Ether withdrawal handling. ☑ Passed

Edge-cases for all asset types

Test default expiration and prevent early withdrawal ☑ Passed

Test short expiration duration (1 second) for each asset type ☑ Passed

Test last owner activity update just before expiration ☑ Passed

Test expiration without owner activity ☑ Passed

Test maximum possible deposits ☑ Passed

Test small direct fund transfers ☑ Passed

Test multiple partial beneficiary withdrawals ☑ Passed

Exceptions

Expiration time ☑ Passed

Coins: Positive amount in transfer ☑ Passed

Coins: Positive amount in withdraw ☑ Passed

ERC20 Deposit: Positive amount in transfer ☑ Passed

ERC20Withdraw: Positive amount in transfer ☑ Passed

ERC721 Deposit: Positive NFT ID ☑ Passed

ERC721 Withdraw: Positive NFT ID ☑ Passed

ERC1155 Deposit: Positive NFT ID ☑ Passed

ERC1155 Deposit: Positive amount ☑ Passed

ERC1155 Withdraw: Positive NFT ID ☑ Passed

ERC1155 Withdraw: Positive amount ☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 29



Coconut Vault

All of these test cases passed successfully, indicating that the CoconutVault contract
operates as intended and complies with its specifications. No critical issues or
vulnerabilities were found during the testing process, affirming the robustness of the
contract's design and implementation.

Status:☑ Passed

Conclusion
Based on the audit results, the Coconut Vault contract receives a rating of 9 out of 10
in terms of security. The audit findings and recommendations indicate that the
contract is well-designed, secure, and follows best practices.

● Security Assessment (9/10): The contract demonstrates a strong
commitment to security, with various security measures in place.

● Functional Assessment: The contract aligns with its intended use and
effectively fulfills the specified requirements for secure asset management.

● Code Review: The contract code is well-structured and follows common best
practices.

● Unit Testing: Comprehensive unit tests have been conducted, covering
various aspects of the contract, indicating that the contract operates as
intended without critical issues or vulnerabilities.

● External Audit: An external audit by EtherAuthority.io also confirms that the
contract is "Secured."

In summary, the Coconut Vault contract demonstrates a high level of security and
adherence to best practices. It is well-prepared for deployment on the mainnet.
The recommended improvement to enhance documentation to provide more
detailed usage instructions and explanations was done correctly in the revised smart
contracts code.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 30



Guava Airdrop

Guava Airdrop
Internal Audit Results

The "Guava" smart contract, is a versatile platform for executing one-time,
fixed-amount token airdrops to any recipients.

At its core, the "Guava" contract is designed to enable token airdrops initiated by the
contract owner. This owner-configurable process empowers the contract owner to
specify the total amount of tokens available for distribution. Recipients, referred to as
beneficiaries, possess the agency to claim their allocated tokens at their convenience,
thanks to the contract's user-friendly functionality.

The contract's access control mechanisms ensure that the contract owner retains
control over pivotal parameters, such as the total token supply available for airdrop
and the contract's operational state, which can be either paused or unpaused. This
meticulous control facilitates effective management of the token distribution
process and the overall operation of the contract.

Beneficiaries gain access to their tokens by invoking the `claim` function, but this
action is contingent on specific conditions. The contract validates the availability of
tokens in its designated wallet and requires approval from the contract owner.
Additionally, the contract enforces a one-time claim policy per beneficiary,
preventing multiple claims by the same account.

Overall, the "Guava" contract stands as a resilient and adaptable solution for
executing token airdrops. Its strict adherence to industry best practices ensures both
security and efficiency, while its flexibility and precise control mechanisms make it
well-suited for a wide range of token distribution scenarios on the blockchain.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 31



Guava Airdrop

Audit Results Summary

Guava Airdrop: 9 / 10

We found 2 low severity issues, which were fixed in the revised contract code.

The Crowdsale contract exhibits a strong commitment to security and follows best
practices.

Section Status

External Audit ☑ Passed

Findings and Recommendations ☑ Passed

Security Assessment ☑ Passed

Functional Assessment ☑ Passed

Code Review ☑ Passed

Unit Testing ☑ Passed

The contract demonstrates a commitment to security, and therefore is ready for
mainnet deployment.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 32



Guava Airdrop

Findings and Recommendations
Based on the analysis of the Guava Smart Contract, here are the findings and
recommendations of our code review.

Findings Status

Input Validation: The contract has robust input validation for
essential parameters, reducing the risk of malicious inputs.

☑ Passed

Access Control: Access control mechanisms, such as the
onlyOwner modifier, are in place to restrict privileged
functions to authorized parties.

☑ Passed

Reentrancy Protection: The contract includes a nonReentrant
modifier, which helps guard against reentrancy attacks.

☑ Passed

Overflow and Underflow Protection: Solidity 0.8.2
incorporates native protection against arithmetic overflows
and underflows, reducing risks.

☑ Passed

Fallback Function: The contract handles Ether transfers
appropriately by reverting them.

☑ Passed

Documentation:While the code is well-structured and
readable, more comprehensive inline comments could
enhance the understanding of complex logic.

☑ Fixed

Based on the improvements made to the Guava Smart Contract, it demonstrates a
higher level of security and clarity in terms of code documentation. The contract's
security rating of 9 / 10 signifies that it's well-designed and reasonably secure.

Status:☑ Fixed / Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 33



Guava Airdrop

Security Assessment
The security assessment of the Guava Smart Contract included an evaluation of key
security practices and an analysis of potential vulnerabilities. The assessment covered
the following aspects:

Input Validation: The contract demonstrates a strong commitment to
input validation. It rigorously checks the validity of inputs such as
addresses and amounts before processing transactions.

☑ Passed

Access Control: The Guava contract effectively employs access control
mechanisms to restrict certain functions exclusively to the contract
owner. The use of the onlyOwner modifier ensures that critical
parameters, such as the total amount of tokens for beneficiaries, can
only be modified by the owner.

☑ Passed

Reentrancy Vulnerabilities: To mitigate reentrancy vulnerabilities, the
contract utilizes the nonReentrantmodifier. This protective measure
prevents multiple calls to critical functions within the same
transaction, reducing the risk of reentrancy attacks.

☑ Passed

Overflow and Underflow Vulnerabilities: The contract is written in
Solidity 0.8.2, which natively incorporates protection for arithmetic
operations.

☑ Passed

Fallback Function: The contract includes a fallback function to handle
incoming Ether transfers. However, this function is designed to revert
Ether transfers, ensuring that accidental transfers of Ether to the
contract are rejected.

☑ Passed

The Guava Smart Contract demonstrates a strong commitment to security best
practices.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 34



Guava Airdrop

Functional Assessment
The Guava Smart Contract was designed to serve as an airdrop mechanism with
specific functionalities:

1. A project owner can offer an airdrop to the public, limiting each account to a
fixed amount.

2. The airdrop can be stopped either by setting the claim amount to zero or
pausing the contract.

3. Any account can claim the fixed amount only once.

Functional Assessment Results:

1. The project owner can set the total amount of tokens to be
distributed as an airdrop. Each recipient can claim a fixed amount of
tokens, subject to the available balance in the contract and approval by
the contract owner.

☑ Passed

2. The contract owner can set the claim amount to zero using the set
function, effectively stopping the airdrop. Additionally, the contract
includes pause and unpause functions, allowing the owner to pause
the contract temporarily, further fulfilling this part of the intended use.

☑ Passed

3. The contract keeps track of claimed accounts using a mapping and
ensures that a beneficiary can claim the fixed amount only once.

☑ Passed

The Guava Smart Contract exhibits a robust and well-implemented set of
functionalities as outlined in its intended use.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 35



Guava Airdrop

Code Review
The Guava Smart Contract demonstrates a well-structured codebase, adhering to
industry best practices for organization and readability. The contract is divided into
several sections, including import statements, state variables, events, constructor,
and functions. This organization enhances code comprehensibility and
maintainability. Here are some key observations and areas of review:

Pragmas and Compiler Version: The contract begins with
appropriate version pragma directives specifying the compiler
version. This ensures compatibility and avoids potential issues with
future compiler updates.

☑ Passed

Modularity and Reusability: The contract leverages OpenZeppelin
libraries, such as Ownable, ReentrancyGuard, SafeERC20, Pausable,
and ERC20. These external libraries contribute to code modularity
and enhance security by utilizing well-tested, community-reviewed
code.

☑ Passed

Consistent Naming Conventions: Naming conventions for
variables, functions, and events adhere to established best
practices, resulting in clear and self-explanatory names that aid in
code readability.

☑ Passed

Input Validation: The contract incorporates robust input validation
mechanisms. It checks for valid addresses, non-zero amounts, and
other necessary conditions before executing transactions. This is a
critical security feature to prevent unintended behaviors.

☑ Passed

Access Control: Access control is implemented effectively using
the Ownable modifier. Critical functions are restricted to the
contract owner, ensuring that only authorized parties can modify
key parameters. This aligns with security best practices for
privileged actions.

☑ Passed

Reentrancy Protection: The contract includes the
ReentrancyGuard modifier to protect against reentrancy attacks by

☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 36



Guava Airdrop

ensuring that functions cannot be called multiple times within the
same transaction. This feature enhances security and prevents
potential exploits.

Compliance with Solidity Version: The contract is written in
Solidity 0.8.2, a secure and well-established version. It benefits from
native protection against arithmetic overflow and underflow
vulnerabilities.

☑ Passed

Documentation: The contract exhibits a high level of
documentation, providing informative comments for functions,
modifiers, and variables. This documentation enhances code
maintainability and aids developers in understanding the contract's
functionality.

☑ Passed

Enhanced Error Messages: The contract's error messages are
informative, but providing more detailed error messages can assist
users and developers in understanding issues when interacting
with the contract.

☑ Fixed

Events: Consider emitting additional events to provide a more
comprehensive log of contract activities. Events are helpful for
debugging and monitoring contract interactions.

☑ Fixed

Overall, the Guava Smart Contract's codebase demonstrates a commitment to
security and best practices. Our suggestions to enhance error messages and events
have been considered in the reviewed code, making it well-prepared for deployment
and future enhancements.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 37



Guava Airdrop

Unit Testing
During the audit of the smart contract, a series of unit tests were conducted to verify
its functionality and ensure that it behaves as expected in different scenarios. The
testing process involved the use of unit testing scripts, primarily utilizing the
@openzeppelin/test-helpers library, and the Mocha testing framework.

Test Cases. The following test cases scenarios were tested:

Verify that claiming fails without token approval. ☑ Passed

Single Beneficiary Claim: Verify successful token claim by a single
beneficiary.

☑ Passed

Multi-Beneficiary Claim: Verify successful token claims by multiple
beneficiaries.

☑ Passed

Pause Functionality: Ensure token claiming is paused and resumed
correctly.

☑ Passed

Change Token/Wallet: Verify that changing the token and wallet
address works.

☑ Passed

Claim Twice Prevention: Confirm that beneficiaries cannot claim
tokens twice.

☑ Passed

Ownership Management: Test ownership-related functions and
permissions.

☑ Passed

Single Beneficiary Claim (Token Swap): Verify successful token claim
after changing token.

☑ Passed

Multi-Beneficiary Claim (Token Swap): Verify successful claims with
a different token.

☑ Passed

Prevent Ether Transfer: Confirm that direct Ether transfers to the
contract fail.

☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 38



Guava Airdrop

Claim Twice Prevention (Token Swap): Verify that beneficiaries
cannot claim tokens twice after token swap.

☑ Passed

Ownership Management (Token Swap): Test ownership-related
functions after changing the token.

☑ Passed

Exception Tests

Ensure contract creation fails with zero token address. ☑ Passed

Ensure contract creation fails with zero wallet address. ☑ Passed

Ensure claiming fails when the claim amount is zero. ☑ Passed

Ensure Ether transfers to the contract revert as expected. ☑ Passed

Ensure only the owner can change the token address. ☑ Passed

Ensure only the owner can change the wallet address. ☑ Passed

Ensure only the owner can set a new claim amount. ☑ Passed

Ensure only the owner can change the wallet address after token
swap.

☑ Passed

These successful test cases demonstrate that the contract functions as intended and
that it can handle various scenarios effectively. The contract exhibited robust
performance and security in all tested scenarios.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 39



Guava Airdrop

Conclusion
In conclusion, the "Guava" smart contract represents a highly secure and efficient
solution for executing token airdrops. It demonstrates a strong commitment to
security practices and adherence to industry best practices. The contract's design,
which allows the contract owner to configure various parameters such as the total
token supply for airdrops and the contract's operational state, provides precise
control over the token distribution process. Furthermore, the access control
mechanisms are effectively implemented to ensure that critical functions are
restricted to authorized parties.

During the audit, one low-severity issue was identified and promptly addressed in
the revised contract code, further enhancing its security posture. The unit testing
process covered a wide range of scenarios, verifying that the contract behaves as
intended in different situations.

With a security rating of 9/10, the "Guava" smart contract is well-prepared for
deployment to the mainnet. It exhibits a strong commitment to security and best
practices, and the identified issue has been resolved. However, as with any smart
contract, ongoing monitoring and maintenance are essential to address emerging
security threats and ensure its long-term security.

Therefore, we recommend proceeding with the deployment of the contract to the
mainnet, accompanied by a robust monitoring and maintenance strategy to ensure
its continued security and effectiveness.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 40



Tiramisu Airdrop

Tiramisu Airdrop
Internal Audit Results

The Tiramisu smart contract represents a meticulously designed platform that
facilitates a specialized form of token distribution known as a whitelisted airdrop. This
audit aims to comprehensively assess the security, intended use, and documentation
of the Tiramisu contract to ensure its readiness for deployment on mainnet.

At its core, the Tiramisu contract is engineered to empower both the contract owner
and the designated beneficiaries. The contract owner is entrusted with the authority
to load individual beneficiaries with predetermined quantities of tokens. This
capability opens doors to various use cases, from rewarding loyal users to
orchestrating controlled token distribution events. Beneficiaries, on the other hand,
are granted the freedom to claim their allocated tokens at their convenience. This
user-centric approach ensures flexibility and autonomy for token recipients, aligning
with the principles of decentralization.

The central element of the Tiramisu contract is its interaction with an ERC-20 token.
The contract owner designates a specific ERC-20 token for distribution, and the
contract is responsible for managing the allocation and transfer of these tokens.

In this report, we provide a comprehensive audit of the TIramisu Airdrop smart
contract, detailing its structure, functionalities, and security considerations. Our
analysis aims to ensure the contract's integrity, security, and suitability for its
intended purpose, offering valuable insights and recommendations for its continued
safe and effective utilization.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 41



Tiramisu Airdrop

Audit Results Summary

Tiramisu Whitelisted Airdrop: 9 / 10

We found 4 low severity issues, which were fixed in the revised contract code.

The Crowdsale contract exhibits a strong commitment to security and follows best
practices.

Section Status

External Audit ☑ Passed

Findings and Recommendations ☑ Passed

Security Assessment ☑ Passed

Functional Assessment ☑ Passed

Code Review ☑ Passed

Unit Testing ☑ Passed

The contract demonstrates a commitment to security, and therefore is ready for
mainnet deployment.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 42



Tiramisu Airdrop

Findings and Recommendations
During the audit of the Tiramisu smart contract, we conducted a thorough analysis
of the codebase to identify potential vulnerabilities and areas for improvement.

Findings Status

Input Validation: The contract has robust input validation for
essential parameters, reducing the risk of malicious inputs.

☑ Passed

Access Control: Access control mechanisms, such as the
onlyOwner modifier, are in place to restrict privileged
functions to authorized parties.

☑ Passed

Reentrancy Protection: The contract includes a nonReentrant
modifier, which helps guard against reentrancy attacks.

☑ Passed

Overflow and Underflow Protection: Solidity 0.8.2
incorporates native protection against arithmetic overflows
and underflows, reducing risks.

☑ Passed

Fallback Function: The contract handles Ether transfers
appropriately by reverting them, preventing accidental Ether
loss.

☑ Passed

Documentation:While the code is well-structured and
readable, more comprehensive inline comments could
enhance the understanding of complex logic.

☑ Fixed

The Guava Smart Contract demonstrates a higher level of security. The contract's
security rating of 9 / 10 signifies that it's well-designed and reasonably secure.

Status:☑ Fixed / Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 43



Tiramisu Airdrop

Functional Assessment
The Tiramisu Smart Contract was designed to serve as a whitelisted airdrop
mechanism with specific functionalities:

1. A project owner can offer an airdrop to a list of whitelisted accounts, limiting
each account to a specific amount. Any whitelisted account can claim the
fixed amount only once

2. Accounts not present on the whitelist cannot claim tokens.
3. The airdrop can be stopped either by setting the claim amount of every

account in the whitelist to zero or by pausing the contract.

Functional Assessment Results:

1. The project owner holds the capability to initiate an airdrop,
targeting a specified list of whitelisted accounts. Importantly, this
allows for individual limits on the token allocation for each account.

☑ Passed

2. Accounts that do not appear on the whitelist are unable to claim
tokens. The contract enforces strict adherence to the whitelist,
ensuring that only designated recipients can participate in the airdrop.

☑ Passed

3. The contract offers a high degree of control over the airdrop process.
It permits the project owner to halt.

☑ Passed

The Tiramisu Smart Contract was purposefully crafted to function as a whitelisted
airdrop mechanism, encompassing the intended features.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 44



Tiramisu Airdrop

Code Review
The Tiramisu smart contract has been thoroughly reviewed to assess its code quality,
adherence to coding standards, and potential security risks. Below is a
comprehensive analysis of the code, along with recommendations for improvement
in terms of documentation, security, and overall code quality.

Code Structure and Clarity: The code maintains a clear and
structured format, which adheres to best practices for readability.
Descriptive names for functions and variables significantly enhance
code comprehension.

☑ Passed

Documentation: The contract is appropriately documented with
comments and function descriptions, contributing to code
understandability. The introduction and contract purpose are
well-documented, providing a clear overview of its intended
functionality. The addition of new events, "TokenChanged" and
"WalletChanged," is appropriately documented, which enhances
code transparency.

☑ Fixed

Reentrancy Protection: The contract utilizes the
"ReentrancyGuard" modifier to mitigate potential reentrancy
attacks. However, it remains crucial to ensure that all external calls
are performed after state changes to prevent reentrancy
vulnerabilities effectively.

☑ Fixed

Error messages have been improved and are informative. These
detailed error messages assist users and developers in
understanding issues during interactions.

☑ FIxed

Input validation checks, such as verifying valid addresses and
non-zero values, are recommended to prevent unintended
behaviors and vulnerabilities effectively.

☑ Fixed

Whitelist mechanism: it is implemented using the totalTokens
mapping, where each whitelisted address is associated with a
specific token amount. This mechanism restricts token claims to

☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 45



Tiramisu Airdrop

addresses present in the whitelist, enhancing security and control.

Events: The contract emits four events, including
"BeneficiaryLoaded," "Claim," "TokenChanged," and
"WalletChanged." These events provide a comprehensive log of
contract activities, contributing to transparency and traceability.

☑ Passed

Overall, the Tiramisu smart contract demonstrates a well-structured and readable
codebase, coupled with strong adherence to coding standards and best practices.
The code has been significantly improved in terms of documentation, security, and
user experience. The implementation of the whitelist mechanism using the
totalTokens mapping effectively restricts participation to approved addresses,
enhancing its utility and security.

Status:☑ Passed

Unit Testing
During the audit of the smart contract, a series of unit tests were conducted to verify
its functionality and ensure that it behaves as expected in different scenarios. The
testing process involved the use of unit testing scripts, primarily utilizing the
@openzeppelin/test-helpers library, and the Mocha testing framework.

Test Cases. The following test cases scenarios were tested:

Reverts when the token address is zero. ☑ Passed

Reverts when the wallet address is zero. ☑ Passed

Load Single when wallet address is zero. ☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 46



Tiramisu Airdrop

Load Single when token address is zero. ☑ Passed

Beneficiary address is zero (ignored in load). ☑ Passed

Cannot claim if not whitelisted. ☑ Passed

Claim works. ☑ Passed

Cannot claim twice. ☑ Passed

Can claim again if loaded again. ☑ Passed

Load Multiple Beneficiaries: ☑ Passed

Changing Token andWallet ☑ Passed

Only the owner can change the token. ☑ Passed

Only the owner can change their wallet. ☑ Passed

Only the owner can load. ☑ Passed

Cannot claim with unapproved tokens. ☑ Passed

Cannot claim if not whitelisted. ☑ Passed

These successful test cases demonstrate that the contract functions as intended and
that it can handle various scenarios effectively. The contract exhibited robust
performance and security in all tested scenarios.

Status:☑ Passed

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 47



Tiramisu Airdrop

Conclusion
The Tiramisu smart contract has undergone a thorough internal audit to evaluate its
security, functionality, and documentation, with a resulting audit rating of 9/10. The
contract has demonstrated a strong commitment to security and has addressed the
low severity issues identified during the audit. This rating reflects the contract's
well-designed structure and robust security features.

During the audit, few low-severity issues were identified and promptly addressed in
the revised contract code, further enhancing its security posture. The unit testing
process covered a wide range of scenarios, verifying that the contract behaves as
intended in different situations.

The contract's primary purpose is to facilitate a whitelisted airdrop, empowering the
contract owner to allocate tokens to specific beneficiaries while providing the
recipients with the flexibility to claim their tokens at their convenience. The contract
effectively enforces access control, ensuring that only authorized parties can execute
privileged functions.

In summary, the Tiramisu smart contract has demonstrated readiness for
deployment on the mainnet. It exhibits a high level of security, strong adherence to
coding standards, and improvements in documentation and user experience. The
low severity issues identified during the audit have been addressed, enhancing the
contract's integrity and reliability.

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 48



Tiramisu Airdrop

Final
Remarks

All audit findings have been diligently addressed to enhance the contract's security
and functionality, thereby ensuring a smooth and transparent operation for our
users. We are committed to delivering a product of the highest quality and efficiency,
and this audit represents a significant step in that direction.

As part of our ongoing commitment to user safety, we strongly encourage our users
to conduct their own research, run tests, and perform audits before deploying this
product in a production environment. Your due diligence plays a crucial role in
ensuring the reliability and security of the products you choose to use.

We remain dedicated to providing innovative and secure solutions to meet your
blockchain and smart contract needs. Stay informed, stay secure, and thank you for
choosing our services.

___

WP Smart Contracts Team

____
WPSmartContracts.com - The Ultimate Smart Contract Integration For WordPress Audit Results - 49


