
Reflect Finance
Security Assessment

January 18th, 2021

For :
Reflect Finance

By :

Dan She @ CertiK
dan.she@certik.org

Connie Lam @ CertiK

connie.lam@certik.org

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. These
reports are not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any
team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any particular project.
These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their code while
reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company
and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack
vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation and overall
best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase the quality of
the company/product’s IT infrastructure and or source code.

Project Name Reflect

Description A token contract

Platform Ethereum

Codebase GitHub Repository

Commit 47e0749a06e70d6538293855f950700e23d5138c

Delivery Date Jan. 18th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Jan. 10, 2021 - Jan. 18, 2021

Total Issues 4

Total Critical 0

Total Major 0

Total Minor 1

Total Informational 3

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://github.com/reflectfinance/reflect-contracts
https://github.com/reflectfinance/reflect-contracts
https://github.com/reflectfinance/reflect-contracts/commit/47e0749a06e70d6538293855f950700e23d5138c

Contract SHA-256 Checksum Commit

REFLECT.sol 5481363292067ac9007be674c86aaf13c250a911999dcc4ff4f8f1461494429d 47e0749a06e70d6538293855f950700e23d5138c

 Executive Summary

This report has been prepared for Reflect smart contract to discover issues and vulnerabilities in the source code of their
Smart Contract as well as any contract dependencies that were not part of an officially recognized library. A comprehensive
examination has been performed, utilizing Dynamic Analysis, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.
Assessing the codebase to ensure compliance with current best practices and industry standards.
Ensuring contract logic meets the specifications and intentions of the client.
Cross referencing contract structure and implementation against similar smart contracts produced by industry leaders.
Thorough line-by-line manual review of the entire codebase by industry experts.

 File in Scope

 Documentation

The sources of truth regarding the operation of the contracts in scope were lackluster and are something we advise to be
enriched to aid in the legibility of the codebase as well as project. To help aid our understanding of each contract’s functionality
we referred to in-line comments and naming conventions.

These were considered the specification, and when discrepancies arose with the actual code behaviour, we consulted with the
CascadeV2 team or reported an issue.

 Review Notes

Certain optimization steps that we pinpointed in the source code mostly referred to coding standards and inefficiencies,
however 2 major and 2 minor vulnerabilities were identified during our audit that solely concerns the specification.

Certain discrepancies between the expected specification and the implementation of it were identified and were relayed to the
team, however they pose no type of vulnerability and concern an optional code path that was unaccounted for.

ID Title Type Severity Resolved

Exhibit-01 Function and variable types Gas Optimization Informational

Exhibit-02 Incorrect error message Optimization Minor

Exhibit-03 Redundant code Optimization Informational

Exhibit-04 Dynamic rate between rSupply and tSupply Logical Issue Informational

The project has adequate doumentation and specification outside of the source files, also the code comment coverage is
detailed.

 Recommendations

Overall, the codebase of the contracts should be refactored to assimilate the findings of this report, enforce linters and / or
coding styles as well as correct any spelling errors and mistakes that appear throughout the code to achieve a high standard of
code quality and security.

 Findings

Type Severity Location

Gas Optimization Informational

Type Severity Location

Optimization Minor REFLECT.sol L133

 Exhibit-01: Function and variable types

Recommendation:

The following variables should be constant:

_decimals
_name
_symbol

The following functions should be declared external for lower gas costs if they will not be called internally:
name()
symbol()
decimals()
totalSupply()
balanceOf(address)
transfer(address,uint256)
allowance(address,address)
approve(address,uint256)
transferFrom(address,address,uint256)
increaseAllowance(address,uint256)
decreaseAllowance(address,uint256)
isExcluded(address)
totalFees()
reflect(uint256)
reflectionFromToken(uint256,bool)

 Exhibit-02: Incorrect Error Message

Description:

The error message in require(_isExcluded[account], "Account is already excluded") does not describe the error
correctly.

https://github.com/reflectfinance/reflect-contracts/blob/main/contracts/REFLECT.sol#L133

Type Severity Location

Optimization Information REFLECT.sol L161-162

Type Severity Location

Logical Issue Informational

Recommendation:

The message "Account is already excluded" can be changed to "Account is not excluded" .

 Exhibit-03: Redundant Code

Description:

The condition !_isExcluded[sender] && !_isExcluded[recipient] can be included in else .

Recommendation:

The following code can be removed:

 Exhibit-04: Dynamic Rate Between rSupplyrSupply and tSupplytSupply

Description:

Suppose the initial total supplies _tTotal = and _rTotal , then the initial exchange rate between rSupply and
tSupply .

After we make the first transfer of amount x from the initial owner to account A , the r balance of A _rOwned[A]
. And _rTotal becomes because of the transfer fees.

Then we exclude account A such that the t balance _tOwned[A] .
Now the rate

Similarly we can find the exchange rate will decrease as more accounts are excluded. However, as long as the majority of the
supply is not excluded, the decrease will be small.

 ... else if (!_isExcluded[sender] && !_isExcluded[recipient]) {
 _transferStandard(sender, recipient, amount);
 } ...

1
2
3

https://github.com/reflectfinance/reflect-contracts/blob/main/contracts/REFLECT.sol#L161

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different, more optimal
EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows, incorrect
operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on how
block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-able by
anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in a
vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an instorage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase more legible
and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should otherwise be
specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the specified
version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

Icons explanation

 : Issue resolved

 : Issue not resolved / Acknowledged. The team will be fixing the issues in the own timeframe.

 : Issue partially resolved. Not all instances of an issue was resolved.

	 Disclaimer
	What is a CertiK report?

	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 File in Scope
	 Documentation
	 Review Notes
	 Recommendations
	 Findings
	 Exhibit-01: Function and variable types
	Recommendation:

	 Exhibit-02: Incorrect Error Message
	Description:
	Recommendation:

	 Exhibit-03: Redundant Code
	Description:
	Recommendation:

	 Exhibit-04: Dynamic Rate Between rSupply and tSupply
	Description:

	Appendix
	Finding Categories
	Icons explanation

